The effect of titanium dioxide modification on the copper powder bactericidal properties
More details
Hide details
Engineering of Biomaterials 2019;(149):15-19
KEYWORDS
ABSTRACT
he bactericidal and bacteriostatic effects of copper have been known for a long time. However, the coatings apart from biological activity should fulfil a number of other requirements, such as tightness, scratch resistance or aesthetic appearance. Researchers have been working on creating durable coatings meeting these requirements for a long time. Scientific research indicates a high interest in active coatings. Nano-scale additives are used, with the aim to modify the material’s performance at the atomic level. Composite coatings allow us to provide the materials multifunctionality, and in addition, can enhance their mutual action. There are many methods for creating such materials. One of the techniques of applying composite coatings is the Cold Spray method, in which the coating is made of a powder. The main purpose of the modification is to obtain a bactericidal and bacteriostatic effect, but also a durable and wear-resistant coating. The paper proposes modifications of copper powder with amorphous submicron titanium dioxide in order to increase its biological activity. The modified powder can be used to create coatings by various methods including thermal methods. The work presents a material analysis of Cu and TiO2 powders and results of bactericidal tests carried out on a Cu-TiO2 composite powder. The experiment included Escherichia coli and Staphylococcus aureus. The studies have shown a positive effect of the addition of TiO2 on bactericidal properties against both Staphylococcus aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria) when mixed with copper at 1:9 ratio.